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1. Introduction

Quantization of general relativity has been one of the most serious challenges for theoretical

physics for a long time. Its coupling constant is dimensionful, which makes the theory

apparently non-renormalizable. Thus, we need to complete the theory in the ultraviolet

(UV) to make it into a consistent quantum theory. The prime candidate for quantized

gravity is the superstring theory, and the progress we made during the last decade makes

us confident that there exist many consistent four-dimensional theories with a high degree

of supersymmetry containing quantized graviton in their spectrum. These low energy

field theories coupled to gravity have a consistent UV completion and are obtained via

compactification of superstring theory on suitable internal manifolds.

When we come to theories with a smaller number of supersymmetries the situation

becomes somewhat delicate. Recent developments suggest that there exists an enormous

number of N = 1 supersymmetric four-dimensional models with negative cosmological

constant (for a review, see e.g. [1]). This landscape of superstring vacua, if taken at

face value, predicts a disturbingly huge number, 10200 or larger, of solutions with varying

gauge groups and matter contents. Then it is natural to ask which theory is realized as a

low-energy effective description of a consistent theory with quantized gravity [2]. Several

criteria have been already proposed in [3, 4] which characterize models in the swampland

which cannot be UV completed to a consistent theory of quantum gravity.

The criterion we will focus in this article is the weak-gravity conjecture proposed in [3];

one way to state the conjecture is that if a consistent theory coupled to gravity with the

Planck scale Mpl contains a gauge field with the coupling constant g, then there should
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necessarily be a new physics around the mass scale gMpl. We refer the reader to the

original article for the arguments which led to this proposal [3]. Our objective in this

article is to show how this conjecture will generically hold within the framework of N = 2

supersymmetric Yang-Mills coupled to N = 2 supergravity.

The system of N = 2 supersymmetry is well suited to the analysis of the effects of

quantum gravity on the gauge theory. One advantage is that the dynamics of N = 2 super-

symmetric Yang-Mills theories has been studied in great detail since the pioneering work

of [5]. Another advantage is that the limit where the N = 2 Yang-Mills theory decouples

from the N = 2 supergravity is fairly well understood in the context of the string com-

pactification on Calabi-Yau (CY) manifold with a fiber of ADE singularities. This limit is

known as the rigid limit or decoupling limit since supersymmetry becomes rigid and gravity

decouples from the gauge theory in the limit. It is also called the geometric-engineering

limit [6 – 8], since non-Abelian gauge symmetry is generated by ADE singularities.

In this paper we consider a type II string theory on CY manifolds which possess

K3 fibration over CP
1 and thus has a dual heterotic string description. At the geometric

engineering limit ǫ → 0 when the K3 surface develops ADE singularity, such a CY manifold

acquires periods which behave as a power and logarithm of ǫ. We shall show that the ratio

of these periods leads to the hierarchy of gauge and gravity mass scales which has exactly

the form of the weak gravity conjecture. Since the geometric engineering limit is the only

way to generate non-Abelian gauge symmetry in type II theory, the weak gravity conjecture

seems to hold generically in N = 2 gauge theory coupled to N = 2 supergravity. Actually

as is well-known, Mhet=gMpl is the mass scale of heterotic string theory and thus the weak

gravity conjecture seems to fit very nicely with the type II-heterotic duality.

In our analysis the holomorphy and the special geometry of N = 2 theories play the

basic role. Holomorphic functions are determined by their behavior at the singularities, in

particular by the monodromy properties around the singular locus.

The organization of the paper is as follows: In section 2 we discuss an example of a

type II string theory compactified on a CY manifold with a K3 fibration. We shall show

how a hierarchy of mass scales is generated in the rigid limit ǫ → 0 which fits exactly to

the weak gravity conjecture. We also point out that the presence of a logarithmic period

log ǫ predicts a kinetic term for a field S

∂µS∂µS

(Im S)2
. (1.1)

S corresponds to the gauge coupling constant S = θ/(2π)+4πi/g2 and maps to the heterotic

dilaton under the type II/heterotic duality. In section 3 we will discuss generalization of

the weak gravity hypothesis. We discuss in section 4 the mechanism of how the logarithmic

periods necessarily appear in a CY manifold with a K3 fibration. In section 5 we use the

embedding of gauge theory into supergravity and derive the renormalization group formula

for the dependence of the prepotential Fgauge on the dynamical scale Λ [9 – 11]. We derive

for any gauge theory of ADE group, a relation

∂Fgauge

∂ log Λ
=

h

πi
u2. (1.2)
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Here u2 = 〈tr φ2〉 and φ denotes the adjoint scalar in the vector multiplet. h is the Coxeter

number of the group. We conclude this note with some discussions in section 6.

2. An example

2.1 A Calabi-Yau and the rigid limit

Let us start with an example from the string theory. As is well-known, in the type IIA

superstring theory, an N = 2 supergravity system in four dimensions can be obtained by

compactification on a CY manifold M . It is also known that the SU(n) N = 2 gauge

symmetry arises if M has a sphere of An−1 type singularities. In the simplest case of A1

singularity such a CY manifold has at least two Kähler parameters: one for the size of the

sphere of the singularities, and the other for the size of resolution of singularities. One

explicit example is given by a CY manifold X8 which is a degree 8 hypersurface in the

weighted projective space WCP
4
1,1,2,2,2 with Hodge numbers h11 = 2, h21 = 86.

Our analysis is facilitated by going to the mirror type IIB theory where world-sheet

instanton corrections in IIA theory are summed up by mirror transformation. Mirror pair

of X8 and X∗
8 has been extensively studied in the literature (e.g. [12 – 14]). We first briefly

review their properties. Defining equation of the mirror X∗
8 is given by

X∗
8 : W =

B

8
x8

1 +
B

8
x8

2 +
1

4
x4

3 +
1

4
x4

4 +
1

4
x4

5 − ψ0x1x2x3x4x5 −
1

4
ψ2(x1x2)

4 = 0 (2.1)

in an orbifold of WCP
4
1,1,2,2,2. [B : ψ0 : ψ2] parametrizes the complex structure moduli of

X∗
8 . We first note that this hypersurface has a structure of a K3 fibration over CP

1: by a

change of variables x0 = x1x2, ζ = x1/x2, W is rewritten as

W =
B′

4
x4

0 +
1

4
x4

3 +
1

4
x4

4 +
1

4
x4

5 − ψ0x0x3x4x5 = 0, (2.2)

B′ =
B

2

(

ζ +
1

ζ

)

− ψ2. (2.3)

ζ parametrizes the base of the K3 fibration. K3 surface (2.2) (with fixed ζ) has singularities

at

B′ = 0; large complex structure limit, (2.4)

B′ = ψ4
0 ; conifold singularity. (2.5)

These are located by imposing equations W = 0, ∂W/∂xi = 0, i = 0, 3, 4, 5 simultaneously.

If we solve (2.4), (2.5) for ζ, we find

B′ = 0 =⇒ ζ = e±0 , where e±0 =
ψ2

B
±

√

(

ψ2

B

)2

− 1, (2.6)

B′ = ψ4
0 =⇒ ζ = e±1 , where e±1 =

(ψ2 + ψ4
0)

B
±

√

(

ψ2 + ψ4
0

B

)2

− 1. (2.7)
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Figure 1: Discriminant loci of the moduli of the CY X∗

8
, before the blowup.

Singularities of the total space X∗
8 are located by further imposing ∂B′/∂ζ = 0

∂B′

∂ζ
=⇒ B = 0 or ζ = ±1. (2.8)

Substituting ζ = ±1 into (2.4), (2.5) we find singular loci in the moduli space of X∗
8

B = ±ψ2, B = ±(ψ2 + ψ4
0). (2.9)

These coincide with the locations where e±0 , e±1 become degenerate.

Thus the discriminant of the mirror CY manifold is given by

∆ = B2(B2 − ψ2
2)(B

2 − (ψ2 + ψ4
0)

2). (2.10)

Three components of the discriminant loci are depicted in figure 1. The first and the second

factor intersect tangentially at the large complex structure point, and the third factor is

the conifold locus. The conifold locus and the locus B2 = 0 also meet tangentially at the

rigid limit,1 so that the moduli space needs to be blown up at these points.

We now concentrate on the region near the rigid limit. The blowing up introduces an

exceptional curve which is a CP
1 parametrized by [Λ2 : u] via the relation

ǫΛ2 = B, ǫu = ψ2 + ψ4
0 . (2.11)

The exceptional curve is at ǫ = 0. The discriminant loci after the blowup are shown in

figure 2.

The defining polynomial W in the limit ǫ → 0 is given by

W =
ǫ

2

[

1

2

(

w +
Λ4

w

)

+ x2 + y2 + z2 − u

]

+ O(ǫ2). (2.12)

after a suitable redefinition of the coordinates. This is a fibration of A1 singularity over CP
1

parametrized by w. It is in fact the Seiberg-Witten geometry of the N = 2 supersymmetric

pure SU(2) Yang-Mills theory with the modulus u = 〈tr φ2〉 and the dynamical mass scale

Λ. Thus, the exceptional curve we have introduced is identified as the u-plane of SU(2)

1The parameter sets (B, ψ0, ψ2) and (−B, ψ0, ψ2) describe the same complex structure, and so the

natural coordinate of the moduli is B2 rather than B.
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Figure 2: Discriminant loci of the moduli of the CY X∗

8
after the blowup. LCS stands for the

Large Complex Structure point.

gauge theory: the u-plane is naturally compactified at u = ∞ into a sphere. We call this

sphere the rigid limit locus.

Note that before taking the rigid limit ǫ → 0, the theory contains h11 + 1 = 3 gauge

fields: they are the graviphoton, the gauge partner of the scalar field S and the U(1)

(Cartan-subalgebra) part of SU(2) gauge field. Here S denotes the scalar field which

corresponds to the gauge coupling constant in field theory,

S =
θ

2π
+

4πi

g2
. (2.13)

We recall that when CY manifold M possesses a K3 fibration on CP
1, there exist a duality

between type IIA on M and heterotic theory on K3 × T 2 [15]. The field S corresponds

to the size of the base CP
1 of K3 fibration in type IIA theory and becomes the heterotic

dilaton under this duality. In the decoupling limit ǫ → 0, two of the gauge fields, the

graviphoton and the partner of S, disappear and we are only left with the (Cartan part

of) SU(2) gauge field.

2.2 Behavior of the Kähler potential

Let us next quickly recall the structure of vector multiplet scalars in the N = 2 theories.

First, in the case of field theories of rigid N = 2 supersymmetry with the gauge group

U(1)n, there exist n complex scalar fields φi, (i = 1, . . . , n). Their Kähler potential is given

by

K = Im
∑

i

(aD
i )∗ai (2.14)

where ai and aD
i are holomorphic functions of the VEV’s of φi. ai and aD

i are called the

special coordinates or the periods of the theory. Dual periods are related to each other as

aD
i =

∂Fgauge

∂ai
, i = 1, · · · , n (2.15)

where Fgauge denotes the prepotential.
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Secondly, in the case of N = 2 supergravity with N vector multiplets, there exist

2(N + 1) periods Xa, Fa, a = 1, · · · , N + 1. The Kähler potential is given by

e−K = Im
∑

a

F ∗
a Xa. (2.16)

The periods Xa, Fa are holomorphic functions of scalars Φi, (i = 1, . . . , N). Under the

Kähler transformation K → K−f−f∗ periods are transformed as Xa → efXa, Fa → efFa.

The mass squared of a BPS-saturated soliton with charges (qa,m
a) is then given by

m2 = eK |
∑

a

(qaX
a + maFa)|2, (2.17)

which is invariant under the Kähler transformation. An important property of the super-

gravity periods is the transversality condition:

∑

a

Xa ∂Fa

∂Φi
−

∑

a

∂Xa

∂Φi
Fa = 0, (2.18)

which guarantees the existence of the prepotential. Prepotential of N = 2 supergravity is

a homogeneous function of degree 2 in Xa.

In the case of CY compactification of type IIB string theory, the periods are given by

Xa =

∫

Aa

Ω, Fa =

∫

Ba

Ω (2.19)

where Ω is the (3, 0)-form of the CY and Aa, Ba are the canonical basis of H3(M
∗, Z)

of CY manifold. In this case the condition (2.18) comes from the Griffiths transversality
∫

Ω ∧ ∂ΦiΩ = 0.

Now let us go back to the example of the previous section, type IIB string theory

compactified on X8. In the field theory limit we have only one gauge field (n = 1) and

two periods a and aD of SU(2) Seiberg-Witten theory. At the level of supergravity there

exist three gauge fields (two vector multiplets, N = 2) and six periods Xa, Fa, a = 1, 2, 3.

Behavior of these periods near the decoupling limit and in particular their monodromy

properties around rigid limit locus have been discussed in great detail in [14].

It turns out that two of the periods, say X1 and F1, are converted to the gauge theory

periods in the rigid limit. They behave as

X1 = ǫ1/2a + O(ǫ), F1 = ǫ1/2aD + O(ǫ). (2.20)

Remaining four periods behave as

X2, X3 = 1 + O(ǫ1/2), F2, F3 =
1

2πi
log ǫ + O(1). (2.21)

The origin of logarithmic behaviors in F2, F3 will be discussed in section 4: they come from

the geometry of K3 fibration of the CY manifold.

Then using (2.16) we find that eK behaves as log 1/|ǫ|. Therefore the supergravity

Kähler potential is expanded as

K = log(log 1/|ǫ|) +
|ǫ|

log 1/|ǫ| Im(aD)∗a + · · · . (2.22)
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as ǫ → 0. Note that Im
(

aD
)∗

a is the Kähler potential of the field theory (2.14). Thus we

can clearly see that SU(2) super Yang-Mills theory decouples from gravity.

The factor |ǫ| in front of the Kähler potential of the field theory determines the hier-

archy between the Planck scale and the scale of the gauge theory: it is basically in accord

with the expectation [8] with |ǫ|1/2 being identified with the dynamical mass scale Λgauge

of the gauge theory. The existence of an extra factor of log 1/|ǫ| in the denominator was

first recognized by the authors of [14]. We will see in the following that this factor implies

the weak-gravity conjecture in the present context.

Let us now consider the weak coupling region of gauge theory for the sake of simplicity.

There the periods a and aD behave as

a ≈
√

2u, aD ≈ i

π

√
2u log u. (2.23)

Using the relation of periods to the low-energy gauge coupling constant τ :

τ =
θ

2π
+

4πi

g2(mW )
=

∂aD

∂a
, (2.24)

we find

e−2π2/g2(mW ) = u−1/2. (2.25)

The coupling constant g in the above equation is to be evaluated at the scale of the mass

mW of the massive gauge boson where the coupling stops running. mW is, in turn, given

by the formula (2.17)

m2
W = eK |X1|2 =

|ǫ|
log 1/|ǫ|u. (2.26)

From (2.25) and (2.26), we find the dynamical scale of the gauge theory

Λgauge = mW e−2π2/g2(mW ) =
|ǫ|1/2

(log 1/|ǫ|)1/2
Mpl (2.27)

where we reinstated the Planck scale to recover the correct mass dimension.

Let us next introduce a chiral superfield S = θ/2π + 4πi/g2 via the relation

S =
1

πi
log ǫ. (2.28)

Then, the monodromy around ǫ = 0 is generated by the shift S → S +2. Im S, which is the

partner of the dynamical theta angle, is the natural bare gauge coupling constant in the

supergravity. Furthermore, S coincides with the heterotic dilaton which we have discussed

at the end of section 2.1. There will be subleading corrections to (2.28) if one goes outside

the region of weak coupling or small ǫ. Another notable fact is that, because of the Kähler

potential (2.22), the field S in fact has the standard kinetic term for the dilaton,

gSS∗∂µS∂µS∗ =
∂µS∂µS∗

(Im S)2
. (2.29)

Using the field S = θ/2π + 4πi/g2, the relation (2.27) now becomes

Λgauge = e−2π2/g2 · gMpl. (2.30)

– 7 –
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Figure 3: Running of the coupling in the gauge theory coupled to supergravity.

There exists an extra factor of g in front of Mpl in the above equation, which means that

the ultraviolet gauge coupling g is defined not at the Planck scale Mpl but at a lower energy

scale gMpl. The running of the gauge coupling from the value at low energy Im τ to the

one at high energy ImS is schematically depicted in figure 3. The existence of the new

scale gMpl is what the weak gravity conjecture has predicted. Thus the analysis of the

N = 2 SU(2) gauge theory coupled to supergravity supports the weak gravity conjecture.

3. Generalization

Let us consider what happens in the generic N = 2 gauge theory coupled to N = 2

supergravity. Suppose the gauge theory has n vector multiplets. In the coupled gauge-

gravity system the gauge coupling constant is promoted to a scalar field S. Thus there is

at least one extra vector multiplet in the locally supersymmetric theory. Let us consider

the minimal situation; i.e. the total number of the U(1) vector multiplets being equal to

n + 1. Then, altogether there are n + 2 gauge fields including the graviphoton and there

will be 2n + 4 supergravity periods. Therefore, by coupling the gauge theory to the N = 2

gravity we should have at least four extra periods.

We assume that there is a locus E in the suitably blown-up moduli space given by

the local parameter ǫ = 0 around which some Ωi, (i = 1, . . . , 2n) of the periods ΩI ,

(I = 1, . . . , 2(n + 2)) become parametrically small, Ωi ∝ O(ǫ1/h) for some power h. This

statement itself is not invariant under Kähler transformation, so we also demand that there

will be periods which stay constant near E.

The monodromy around E may also be logarithmic: thus there might be periods be-

having as ∝ (log ǫ)k. Let p be the largest power k of such periods. There is a mathematical

theorem2 which then states the Kähler potential behaves as

e−K = Im
∑

a

F ∗
a Xa ∝ (log |ǫ|)p. (3.1)

Let us define the chiral field S by

S =
1

πi
log ǫ =

θ

2π
+

4πi

g2
(3.2)

2see e.g. appendix A of [16] and references therein.
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as before. Repeating the argument presented in the last section, we readily obtain a relation

Λgauge ∼ e−4π2/(hg2) · gpMpl. (3.3)

We will see in the next section that h equals the quadratic Casimir of the gauge group in

the case of pure N = 2 gauge theory.

Furthermore, the kinetic term of S is given by

∂µS∂µS∗

(Im S)2
or ∂µS∂µS∗ (3.4)

depending on p 6= 0 or p = 0, respectively. Thus, the weak gravity conjecture in N = 2

supergravity coupled to super Yang-Mills follows from the existence of a logarithmic period

∼ (log ǫ)p, p ≥ 1. Furthermore, the appearance of such logarithmic periods is related to

the field S = log ǫ corresponding to the dilaton in heterotic theory.

4. Explicit description of logarithmic periods

For a CY which is a K3 fibration over CP
1, 3-cycles can be constructed explicitly. We

follow the approach of [14] and appendix in [17] . Consider a CY with a defining equation

w +
µ2

w
+ WK3(x, y, z; tℓ) = 0 (4.1)

where tℓ denote the moduli of the K3. The holomorphic 3-form is given by

Ω =
dw

w
∧ ΩK3, ΩK3 =

dx ∧ dy

∂zWK3
. (4.2)

3-cycles of CY are made of the product of a 1-cycle of the CP
1 base and a 2-cycle of K3.

2-cycles of K3 to be used here are those which are not holomorphically embedded into

K3, since holomorphic cycles have the representative which are of the (1, 1)-form so that

their integrals with the (2,0)-form ΩK3 must vanish. Holomorphic cycles of K3 form the

Picard lattice ΛPic

ΛPic = H1,1(K3) ∩ H2(K3, Z) (4.3)

and its dimension is called the Picard number ρ(K3). Cycles which are not holomorphically

embedded are called transcendental and the lattice Λ of the 2nd homology of K3 has an

orthogonal decomposition into Picard and transcendental lattices

Λ = ΛPic ⊕ Λtr. (4.4)

It is well-known that the lattice Λ has a signature of (3, 19). In the case of projective K3,

the Kähler form becomes algebraic and the Picard lattice has a signature (1, ρ(K3) − 1).

Then the signature of Λtr becomes (2, 20 − ρ(K3)).

In the case of the quartic K3 surfaces which featured in our example X8, the Picard

number is ρ(K3) = 19 and thus there are three transcendental cycles with signature (2, 1).

The 2-cycle with a negative signature, i.e. a negative self-intersection number is the vanish-

ing cycle of A1 singularity. Two 2-cycles of the positive signature generate periods which
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Figure 4: Cuts in the base CP
1.

defining eq. h dx dy dz deg. of Casimirs

An−1 0 = x2 + y2 + zn n n/2 n/2 1 2, 3, . . . , n

Dn+1 0 = x2 + y2z + zn 2n n n − 1 2 2, 4, . . . , 2n

E6 0 = x2 + y3 + z4 12 6 4 3 2, 5, 6, 8, 9, 12

E7 0 = x2 + y3 + yz3 18 9 6 4 2, 6, 8, 10, 12, 14, 18

E8 0 = x2 + y3 + z5 30 15 10 6 2, 8, 12, 14, 18, 20, 24, 30

Table 1: Data of ADE singularities.

have logarithmic behavior in ǫ as we see below. Ref. [14] discusses another example of CY

manifold X24 which also possesses a K3 fibration and produces the SU(3) gauge theory

in the decoupling limit. In this case there exist four transcendental cycles with a signa-

ture (2, 2). Two 2-cycles with the negative signature describe the vanishing cycles of A2

singularity. In the case of general Ar singularity there will be 2 + r transcendental cycles

with the signature (2, r). As we shall see below, two transcendental cycles of K3 with the

positive signature will generate logarithmic cycles of CY manifold.

The CY (4.1) can be thought of as a one-parameter family of K3, whose moduli depend

on w. Suppose a transcendental two-cycle Si degenerates at w + µ2/w = ki. For a small

µ, this happens at w+
i ∼ ki and w−

i ∼ µ2/ki, see figure 4. Let C be the circle around the

origin |w| = |µ|, and Di denote the path connecting w±
i . Then C × Si and Di × Si are

closed 3-cycles of CY manifold.

In general, Yang-Mills gauge theories are geometrically engineered by fine-tuning the

parameters {tℓ} of K3 so that the K3 develops ADE singularities: see [7] for SU(n), [18] for

SO(n) and [19, 20] for En groups. Suppose we have a singularity of type G with rankG = r

around x = y = z = 0. The moduli {tℓ} of K3 are decomposed into two sets of parameters

{u2, · · · , uh}, {v1, v2, · · · }, (4.5)

where ui corresponds to the degree i Casimir invariant of the group G. ui are tuned to

vanish as ǫi/h in the geometric engineering limit and we rescale them as ǫi/h · ui. Here h

is the dual Coxeter number of G. vj are the moduli which remain finite in the engineering

– 10 –



J
H
E
P
0
8
(
2
0
0
7
)
0
6
8

limit. We also introduce the rescaled coordinates as

w = ǫw̃, x = ǫdx/hx̃, y = ǫdy/hỹ, z = ǫdz/hz̃. (4.6)

dx,y,z are the degrees of x, y, z (see table 1). We also set µ = ǫΛh. Then the defining

equation (4.1) of the CY becomes

ǫ

(

w̃ +
Λ2h

w̃
+ WADE(x̃, ỹ, z̃;ui) + O(ǫ1/h)

)

= 0. (4.7)

The holomorphic 3-form is given by

Ω =
dw

w
∧ dx ∧ dy

∂zWK3
= ǫ(dx+dy+dz)/h−1 dw̃

w̃
∧ dx̃ ∧ dỹ

∂z̃WADE
= ǫ1/h dw̃

w̃
∧ ΩADE (4.8)

where we used the fact dx + dy + dz = h + 1.

There are r independent two-cycles Si of K3 which vanish simultaneously in the en-

gineering limit. These give rise to 2r 3-cycles Āi = C × Si and B̄i = Di × Si, i = 1, · · · , r

of the CY as explained above. We can take their linear combinations, Ai and Bi, so that

they have the canonical intersection form, (Ai, Aj) = (Bi, Bj) = 0, (Ai, Bj) = δi
j . Then

ai =

∫

Ai

dw̃

w̃
∧ ΩADE, aD

i =

∫

Bi

dw̃

w̃
∧ ΩADE, (4.9)

are identified with the special coordinates of Seiberg-Witten theory. Corresponding super-

gravity periods behave as

Xi =

∫

Ai

Ω = ǫ1/hai + O(ǫ2/h), Fi =

∫

Bi

Ω = ǫ1/haD
i + O(ǫ2/h). (4.10)

K3 surface has two extra 2-cycles which have a positive signature, as we have noted

above. We call them Ta, a = 1, 2 and arrange them so that they do not intersect Si and

stay at finite values of x, y and z. Now the defining equation of CY near the 3-cycles Ta

is given by

w +
ǫ2Λ2h

w
+ WK3(x, y, z; 0, vj) = 0 (4.11)

Thus from the cycle Ua = C × Ta we obtain the period

ΩUa =

∫

Ua

Ω =

∮

C

dw

w

∫

Ta

ΩK3 = 2πi ca ≈ O(1) where ca =

∫

Ta

ΩK3(ui = 0; vj).

(4.12)

In the case of the cycles Va = Da × Ta, the end points of the w integration become

w−
a ∼ ǫ2Λ2h

ka
, w+

a ∼ ka (4.13)

where ka = w + ǫ2Λ2h/w is the value at which the 2-cycle Ta degenerates. Then we find

the logarithmic behavior

ΩVa =

∫

Va

Ω =

∫ w+
a

w−

a

dw

w

∫

Ta

ΩK3 ≈ −2ca log ǫ. (4.14)

– 11 –
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The analysis of the monodromy under the phase rotation of ǫ suggests

ΩVa ≈ − 1

πi
log ǫ · ΩUa + O(ǫ1/h), (4.15)

although the precise form of this expression will depend on the intersection form of Ta. Thus

we have established the existence of periods behaving logarithmically near the engineering

limit.

5. Renormalization group equation

As an application of the above analysis, we shall derive the relation

∂Fgauge

∂ log Λ
=

h

πi
u2 (5.1)

for pure N = 2 Yang-Mills theory with gauge groups G = A,D,E from its embedding

into supergravity. Here u2 = 〈tr φ2〉 is the second order Casimir and is a monodromy-

invariant coordinate of the moduli space. The relation describes the scaling violation of

the prepotential of gauge theory and is called the renormalization group equation.

Before we start describing our derivation, let us recall how the equation (5.1) was ob-

tained from the point of view of the gauge theory. Originally it was derived for SU(2) in [9]

using the Picard-Fuchs equation for Seiberg-Witten curve, and later it was generalized to

the classical gauge groups in [10, 11] using the property of the hyperelliptic curve describing

the dynamics of the theory. For the E-type gauge groups the relation has not been given

from the SW curve because of its complexity; thus our method gives the first verification

of the relation for the E-type gauge groups.

The relation has been used in the analysis of the geometrical engineering limit in one

of the earliest papers on the subject [6]; here instead, we derive it from the study of the

periods near the engineering limit. It was conjectured already in [11] that the relation

should have a natural interpretation in supergravity since log Λ is no longer an external

parameter but becomes a VEV of a field in supergravity.

The relation should also follow from the microscopic calculations: Recall the funda-

mental relation in the path integral which states that

〈∂λL0〉 = ∂λLeff (5.2)

where L0 is the bare Lagrangian and Leff is the low-energy effective Lagrangian including

the quantum correction. λ denotes some coupling constant of the theory. In the case of

supersymmetric theories one can likewise show

〈∂λW0〉 = ∂λWeff, 〈∂λF0〉 = ∂λFeff (5.3)

where W and F are the super and prepotential, respectively. Now in the N = 2 theory

F0 = τ0 tr φ2. Then the relation (5.1) follows because log Λ ∝ τ0 is the bare coupling

constant and u2 = 〈tr φ2〉. It can be seen more explicitly in the framework of multi-

instanton calculation [21]. So the prepotential constructed from the SW curve should

satisfy the relation.

– 12 –
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Let us now turn to our derivation. Instead of the relation (5.1) itself, we shall show

that its derivative with respect to the moduli satisfies

∂2Fgauge

∂uj∂ log Λ
=

h

πi
δj
2. (5.4)

Then (5.1) follows by integration. The integration constant is zero by virtue of the homo-

geneity of Fgauge. The homogeneity can be used to rewrite l.h.s. of (5.4) and rewrite it as

follows:

∂2Fgauge

∂uj∂ log Λ
=

∂

∂uj

(

2Fgauge −
∑

i

ai ∂Fgauge

∂ai

)

=
∑

i

∂ai

∂uj
aD

i −
∑

i

ai ∂aD
i

∂uj
. (5.5)

Now we use the relation (4.10) between the periods of rigid and local theory and obtain

∑

i

Fi
∂Xi

∂uj
−

∑

i

Xi ∂Fi

∂uj
= ǫ2/h ∂2Fgauge

∂uj∂ log Λ
+ O(ǫ3/h) (5.6)

One of the fundamental properties of the special geometry in supergravity is the transver-

sality condition (2.18). We decompose the periods into two sets as (Xi, Fi;X
a, Fa) where

Xi, Fi are the periods which become those of the gauge theory of the rigid limit, and Xa, Fa

are the extra periods in supergravity. We have

∑

i

Fi
∂Xi

∂uj
−

∑

i

Xi ∂Fi

∂uj
= −

∑

a

Fa
∂Xa

∂uj
+

∑

a

Xa ∂Fa

∂uj
. (5.7)

As shown in the previous section, Xa and Fa have at most log ǫ singularity and the

rest are analytic in ǫi/hui. Furthermore, the logarithmic terms cancel in the r.h.s. of (5.7)

because the l.h.s. is analytic in ǫ1/h. Therefore we have

∑

i

Fi
∂Xi

∂uj
−

∑

i

Xi ∂Fi

∂uj
= −

∑

a

Fa
∂Xa

∂uj
+

∑

a

Xa ∂Fa

∂uj
= const · ǫ2/h δj

2 + O(ǫ3/h). (5.8)

Comparing with (5.6), we obtain (5.4) up to a constant factor.

Two comments are in order: first, the constant factor is non-trivial to determine in

general but should be straightforward to fix in specific cases. It then fixes the proportion-

ality factor between u2 entering in the geometry and 〈tr φ2〉. Second, the derivation above

was so simple that it makes us suspicious why a similar analysis cannot be done in the field

theory limit. Indeed, r.h.s. of (5.5) is a monodromy-invariant quantity of mass dimension

2 − j. Thus, it is a rational function of uj ’s of dimension 2 − j and it is forced to be δ2
j

once one can argue it does not have poles. This is precisely the hard part because the

special coordinates ai and aD
i are complicated functions of uj ’s with a lot of cuts. In our

derivation, we utilize the fact that the extra supergravity periods are analytic in ǫj/huj ,

which does the job.
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6. Discussion

In this article, we have seen how the holomorphy inherent in N = 2 supersymmetry can

be effectively used to study the effect of gravity upon the running of gauge theory. More

specifically, we showed how the monodromy of the periods around the locus of the rigid

limit translates to the hierarchical separation of the dynamical scale of gauge theory and

the Planck scale. We have argued that, as compared to the naive relation

Λgauge ≈ e−4π2/hg2

Mpl (6.1)

there is generically an extra factor of the gauge coupling constant g in the right hand side,

Λgauge ≈ e−4π2/hg2 · gMpl (6.2)

supporting the weak gravity conjecture. We have also seen how the scaling violation of the

prepotential of the gauge theory, (5.1), can be naturally understood from the embedding

into supergravity.

The result presented here is only a small step in utilizing the holomorphy to understand

the dynamics of the coupled N = 2 supergravity-gauge systems. We believe many more

properties can be learned in a similar manner. It would also be interesting to make a

comparison with the result in [22] where the authors calculated the one-loop effect of gravity

to the beta function of the gauge theory. It was argued in [23] that the beta function in [22]

alone leads to the weak gravity conjecture. We will have to supersymmetrize the result

of [22] to carry out the comparison to our case.

It will be very important to see if it is possible to extend our results to the realm

of N = 1 supersymmetric theories. In the case when N = 1 theories are obtained from

those of N = 2 by introducing fluxes, branes etc. many of the structures of the latter

survive. Hopefully we will have enough control over mass scales of these theories to derive

the characterization of consistent N = 1 field theories coupled to gravity.
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